Identifying Artificial Actors in E-Dating: A Probabilistic Segmentation Based on Interactional Pattern Analysis
نویسندگان
چکیده
We propose different behaviour and interaction related indicators of artificial actors (bots) and show how they can be separated from natural users in a virtual dating market. A finite mixture classification model is applied on the different behavioural and interactional information to classify users into bot vs. non-botcategories. Finally the validity of the classification model and the impact of bots on sociodemographic distributions and scientific analysis is discussed.
منابع مشابه
A Pixon-based Image Segmentation Method Considering Textural Characteristics of Image
Image segmentation is an essential and critical process in image processing and pattern recognition. In this paper we proposed a textured-based method to segment an input image into regions. In our method an entropy-based textured map of image is extracted, followed by an histogram equalization step to discriminate different regions. Then with the aim of eliminating unnecessary details and achi...
متن کاملIdentifying and Ranking E-Health Cods of Medical Ethics
Background: The spread of electronic health has led to challenging ethical issues. This paper aims to identify the e-health codes of ethics based on virtue approach in hospitals and prioritize them in order to help managers for better understanding the nature of ethical challenges of e-health. Method: This research is an applied-descriptive study, in detail it is a single cross-survey. Statisti...
متن کاملUsing Probabilistic-Risky Programming Models in Identifying Optimized Pattern of Cultivation under Risk Conditions (Case Study: Shoshtar Region)
Using Telser and Kataoka models of probabilistic-risky mathematical programming, the present research is to determine the optimized pattern of cultivating the agricultural products of Shoshtar region under risky conditions. In order to consider the risk in the mentioned models, time period of agricultural years 1996-1997 till 2004-2005 was taken into account. Results from Telser and Kataoka mod...
متن کاملModified CLPSO-based fuzzy classification System: Color Image Segmentation
Fuzzy segmentation is an effective way of segmenting out objects in images containing both random noise and varying illumination. In this paper, a modified method based on the Comprehensive Learning Particle Swarm Optimization (CLPSO) is proposed for pixel classification in HSI color space by selecting a fuzzy classification system with minimum number of fuzzy rules and minimum number of incorr...
متن کاملA comparison between knowledge-driven fuzzy and data-driven artificial neural network approaches for prospecting porphyry Cu mineralization; a case study of Shahr-e-Babak area, Kerman Province, SE Iran
The study area, located in the southern section of the Central Iranian volcano–sedimentary complex, contains a large number of mineral deposits and occurrences which is currently facing a shortage of resources. Therefore, the prospecting potential areas in the deeper and peripheral spaces has become a high priority in this region. Different direct and indirect methods try to predict promising a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010